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Abstract. For a general direction of the magnetic field the sublattice moments of a uniaxial
antiferromagnet deviate from antiparallel alignment along the uniaxis. The equilibrium
configuration is found from the balance between exchange, anisotropy and Zeeman energies.
The zero-temperature magnon spectrum for the general field direction is derived within the
random-phase approximation and the results are illustrated numerically for MnF2.

1. Introduction

The theory of a two-sublattice antiferromagnet in a zero field or with an external static field
applied along the easy axis has been very extensively studied. In addition to numerous
studies of the ground state, the spin-wave (magnon) spectrum and the related quantities [1]
in the forms of the static and dynamic permeability tensorsEµ(0) and Eα(ω) are well known.
The expression forEµ(ω) is used in calculations of the properties of bulk and surface retarded
and magnetostatic modes [2] which are the elementary excitations for very small values of
wavenumberq.

By contrast, studies of the properties when a static field is applied at a general angle
θ to the easy axis are somewhat less complete. The phase diagram, and in particular
the boundary between the antiferromagnetic (AF) and spin-flop (SF) phases, has been
investigated by several workers; references have been given by Jones and Pankhurst [3]
who reported numerical studies, based on mean-field theory, of the AF–SF boundary. In
addition to uniaxial anisotropy terms−DS2

z , say, giving preferred alignment alongz, they
included orthorhombic terms of the form−D′S2

x . In a subsequent paper, Joneset al [4]
gave an account of spin-wave theory for the antiferromagnet with uniaxial and orthorhombic
anisotropy and a general direction of applied field. They used the linearized Holstein–
Primakoff transformation and the Bogolubov transformation in the standard way [1] in
order to find the spin-wave spectrum. Their formal results are rather general but their
explicit numerical results are for the spin-wave reduction of the equilibrium value of〈Sz〉.

As far as the permeability and related properties for general field direction are concerned,
it was only in 1988 that Almeida and Mills [5] calculatedEµ(ω) for the case when the applied
field is at a general angleθ to the uniaxis. They considered strictly uniaxial anisotropy, as
is appropriate for the tetragonal antiferromagnets FeF2 and MnF2, for example, and applied
random-phase-approximation (RPA) linearization to the equations of motion in order to
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evaluateEµ(ω). In the calculation ofEµ(ω) it is adequate to use long-wavelength (q = 0)
equations and the poles ofEµ(ω) are at theq = 0 spin-wave energies. Almeida and
Mills applied their expressions in an investigation of surface magnetostatic modes, and
the extension to retarded surface modes, i.e. surface magnetic polaritons, was reported
later [6]. The expressions derived in [5] have subsequently been tested experimentally
in a detailed analysis of far-infrared (FIR) reflectivity spectra of FeF2 for θ = 45◦ [7].
More recently [8], an attenuated total reflection (ATR) stage has been added to the FIR
spectrometer and used for the first observation of the surface magnetic polariton (SMP) on
FeF2 for the conventional orientationθ = 0◦. Subsequently [9] ATR studies with a range
of prism angles, still forθ = 0◦, have been used to map out the SMP dispersion relation.
These developments open the way for ATR studies for generalθ and indeed the theoretical
expressions needed to interpret ATR spectra are now available [6, 10, 11].

In view of this increasing activity on theq = 0 dynamics of uniaxial antiferromagnets we
return in this paper to the question of the spin-wave spectrum for generalq andθ in the hope
that this might stimulate further experimental work, most probably by neutron scattering.
We use the simplest useful model, namely the low-temperature RPA, and we include only
the exchange interaction without magnetostatic corrections. This is valid except for the
region of reciprocal space very near the centre of the Brillouin zone which is inaccessible
to neutron scattering. As has been stated, our formalism is a variant of that used by Jones
et al [4] and the results that we derive are implicit within the general framework that
they present. However, we use the same formalism as in our earlier work [5] so as to
facilitate comparison with both theory and the FIR experimental results [7] and we present
explicit formulae and numerical illustrations for the spin-wave spectrum itself. In drawing
dispersion graphs we use the parameters of MnF2 since the magnon energies for MnF2 fall
in a convenient range for neutron scattering.

The Hamiltonian and the equilibrium sublattice orientations for generalθ are reviewed
in section 2. In section 3 we derive the equations of motion for the spin deviations and find
the magnon dispersion relation. Section 4 discusses briefly the special casesθ = 0◦ and
90◦. The results forθ = 0◦ are well known and we simply state them for comparison; the
form of the magnon spectrum forθ = 90◦ is less well known. In section 5 we illustrate
and discuss the form of the dispersion graphs, and conclusions are presented in section 6.

2. Hamiltonian and equilibrium configurations

The problem may be defined by reference to figure 1. The external fieldH0 is applied at
angleθ to the easy axis and we define axesz′ alongH0 and z along the easy axis. Axes
x and x ′ are as shown and they axis is common,y ′ = y. In the presence of the field
the sublattice moments are turned away from the easy axis through the anglesα1 and α2

indicated [2]. The sign convention defined in figure 1 is the same as used previously [5], i.e.
α1 is measured clockwise from the+z axis andα2 clockwise from the−z axis. In practice
for MnF2 for most values ofθ and H0 both α1 and α2 are negative. Since the exchange
is the largest energy, for practical values ofH0 in either FeF2 or MnF2 the magnitudes of
α1 and α2 are no more than a few degrees. However,Eµ(ω) is completely different from
the form that it has whenH0 lies along the easy axis [2, 3] and the magnon spectrum is
likewise quite different.

The Hamiltonian is

H = HE + HA + HZ (1)
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Figure 1. Geometry and axes.

where the exchange term is

HE = J
∑
i,j

Si · Sj (2)

with the sum over the two sublatticesi andj . We assume nearest-neighbour exchange with
J constant. The anisotropy and Zeeman terms are

HA = −D
∑

i

(
Sz

i

)2
− D

∑
j

(
Sz
j

)2
(3)

HZ = −gµBµ0H0

∑
i

Sz′
i − gµBµ0H0

∑
j

Sz′
j . (4)

Equations of motion are derived from (1) and it is convenient to use the primed axes
of figure 1. In order to findα1 andα2 we use the fact that the equilibrium directions are as
shown in figure 1 so that the projections along the primed axes are

Sx ′
i = −S sin

(
θ − α1

)
Sz′

i = S cos
(
θ − α1

)
Sx ′
j = S sin

(
θ − α2

)
Sz′
j = −S cos

(
θ − α2

)
.

(5)

We then equate to zero the time derivatives ofS
y

i andS
y

j . This gives coupled equations for
α1 andα2, namely [5]

ωe sin
(
α2 − α1

) + ω0 sin
(
θ − α1

) − (
ωa/2

)
sin

(
2α1

) = 0 (6)

ωe sin
(
α1 − α2

) − ω0 sin
(
θ − α2

) − (
ωa/2

)
sin

(
2α2

) = 0 (7)

where

ωe = JnS ωa = 2DS ω0 = γµ0H0 (8)

n is the number of nearest neighbours andγ = gµB is 0.933 cm−1 T−1 = 0.1157 meV T−1.
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Figure 2. Solutions of (6) and (7) for the equilibrium anglesα1 and α2 (labelled α and β

respectively) in MnF2 for applied fields of 1, 3 and 5 T.

Equations (6) and (7) apply to any equilibrium state and the solutions include an AF-like
state, an SF state and a paramagnetic (P) state in which the spins are fully aligned along
the direction ofH0. These different solutions may be seen in the special caseθ = 0 for
which (6) and (7) reduce to the same known analytic form.

For generalθ one may expect to find an AF-like phase, with spins near to the easy axis,
for smallH0 and an SF-like phase, with spins in a distorted flop configuration, for largeH0.
We consider here only the magnon spectrum in the AF phase so that we restrict attention
to moderate values ofH0.

For smallθ in the AF state, (6) and (7) can be linearized sinceα1 andα2 are also small.
The linearization amounts only to replacing the sine functions by their arguments and the
solutions of the linear equations are

α1/θ = ω0
(
ωe + ωa + ω0

)(
ωa − ω0

)
/
(
2ωeωa + ω2

a − ω2
0

)
(9)

α2/θ = −ω0
(
ωe + ωa

)
/
(
2ωeωa + ω2

a − ω2
0

)
. (10)

In FeF2 for practical values ofH0, ωe > ωa > ω0 and it follows from (9) and (10) that, for
small θ , α1 is positive andα2 is negative [11]. In MnF2, on the other hand, the inequalities
areωe > ω0 > ωa so that bothα1 andα2 are negative for smallθ .

Some numerical solutions of (6) and (7) in the AF phase of MnF2 are shown in figure 2;
numerical values are [12] ¯hωe = 6.11 meV and ¯hωa = 0.097 meV. The linear portions near
θ = 0 are in agreement with (9) and (10) and the values ofα1 and α2 for θ = 90◦ are
±α = ± sin−1[ω0/(2ωe + ωa)].

3. Equations of motion and dispersion equations

In order to find the magnon spectrum we defineσx ′
i , etc, by

Sx ′
i = Sux + σx ′

i S
y ′
i = σ

y ′
i Sz′

i = Suz + σ z′
i (11)
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with similar definitions on the other sublattice. HereSux and Suz are the zero-order
expressions defined in (5). The equations of motion are linearized in the spin deviations
σx ′

i , etc, and time dependence exp(−iωt) inserted. To solve the equations we defineβk
1(q)

by

σ k
i = N−1/2

∑
q

βk
1(q) exp(iq · ri ) for k = x ′, y ′, z′ (12)

whereN is the number of unit cells in the crystal and the sum is over values ofq allowed
by periodic boundary conditions. The quantityβk

2(q) is defined similarly in terms of a
sum over thej sites. Equations forβk

1(q) and βk
2(q) are then derived in a standard

way [2]. The various steps involved lead to the following:σ k
i and σ k

j are replaced by
βk

1(q) andβk
2(q); n−16iσ

k
i andn−16jσ

k
j are replaced byS(q)βk

1(q) andS(q)βk
2(q) where

S(q) = n−16δ exp(iq · δ) is the usual sum over nearest-neighbour vectorsδ. Thus we find
that

−iωβx
1 (q) = [

ω0 + ωa cosα1 cosθ + ωe cos
(
θ − α2

)]
β

y

1 (q)

+ ωe cos(θ − α1)S(q)β
y

2 (q) (13)

−iωβ
y

1 (q) = −[
ω0 + ωa cos(θ + α1) + ωe cos

(
θ − α2

)]
βx

1 (q) − [
ωa sin

(
θ + α1

)
+ ωe sin

(
θ − α2

)]
βz

1(q) − ωe cos
(
θ − α1

)
S(q)βx

2 (q
)

− ωe sin
(
θ − α1

)
S(q)βz

2(q) (14)

−iωβz
1(q) = [

ωa cosα1 sinθ + ωe sin
(
θ − α2

)]
β

y

1 (q) + ωe sin
(
θ − α1

)
S(q)β

y

2 (q). (15)

The equations forβk
2 are obtained by interchange of the subscripts 1 and 2. In addition

it is necessary to change the signs of all trigonometric functions except cosθ and sinθ .
Equations (13)–(15) refer to the primed axes of figure 1 but, to simplify the notation, the
primes have been dropped.

Linear spin waves are transverse in the sense that the spin-wave displacements are
orthogonal to the equilibrium spin orientations. The latter are given by (5) and therefore

− sin
(
θ − α1

)
βx

1 (q) + cos
(
θ − α1

)
βz

1(q) = 0 (16)

and

sin
(
θ − α2

)
βx

2 (q) − cos
(
θ − α2

)
βz

2(q) = 0 (17)

as may be confirmed by substitution from (13) to (15) and use of (6) and (7). Because of
(16) and (17) the dispersion relation is a quadratic inω2 as it must be for a two-sublattice
antiferromagnet.

In order to derive the magnon spectrum we use (16) and (17) to eliminateβz
1(q) and

βz
2(q) from the equations of motion for thex andy components. We then eliminate they

components to find the coupled linear equations

ω2βx
1 (q) = P11β

x
1 (q) + P12β

x
2 (q) (18)

ω2βx
2 (q) = P21β

x
1 (q) + P22β

x
2 (q) (19)

where

P11 = [
ω0 + ωa cosα1 cosθ + ωe cos

(
θ − α2

)]{
ω0 + ωa cos

(
θ + α1

) + ωe cos
(
θ − α2

)
+ [

ωa sin
(
θ + α1

) + ωe sin
(
θ − α2

)]
tan

(
θ − α1

)}
− ω2

eS
2(q) cos

(
θ − α1

)[
cos

(
θ − α2

) + sin
(
θ − α2

)
tan

(
θ − α1

)]
(20)

P12 = S(q)ωe

[
ω0 + ωa cosα1 cosθ + ωe cos

(
θ − α2

)][
cos

(
θ − α1

)
+ sin

(
θ − α1

)
tan

(
θ − α2

)] + S(q)ωe cos
(
θ − α1

){
ω0 − ωa cos

(
θ + α2

)
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− ωe cos
(
θ − α1

) − [
ωa sin

(
θ + α2

) + ωe sin
(
θ − α1

)]
tan

(
θ − α2

)}
(21)

P21 = −ωeS(q)
[
ω0 − ωa cosα2 cosθ − ωe cos

(
θ − α1

)]
[cos

(
θ − α2

)
+ sin

(
θ − α2

)
tan

(
θ − α1

)] − S(q)ωe cos
(
θ − α2

){
ω0 + ωa cos

(
θ + α1

)
+ ωe cos

(
θ − α2

) + [
ωa sin

(
θ + α1

) + ωe sin
(
θ − α2

)]
tan

(
θ − α1

)}
(22)

P22 = [
ω0 − ωa cosα2 cosθ − ωe cos

(
θ − α1

)]{
ω0 − ωa cos

(
θ + α2

) − ωe cos
(
θ − α1

)
− [

ωa sin
(
θ + α2

) + ωe sin
(
θ − α1

)]
tan

(
θ − α2

)}
− ω2

eS
2(q) cos

(
θ − α2

)[
cos

(
θ − α1

) + sin
(
θ − α1

)
tan

(
θ − α2

)]
. (23)

Finally it follows from (18) and (19) that the two branchesω(q) of the magnon spectrum
are the solutions of the quadratic equation

ω4 − (
P11 + P22

)
ω2 + P11P22 − P12P21 = 0. (24)

4. Special casesθ = 0◦ and 90◦

For θ = 0 the anglesα1 andα2 are also zero. The equations of motion (13)–(15) are readily
seen to reduce to the well known form [2] and may be solved from (24) or diagonalized by
use ofβ±

i = βx
i ± iβy

i . Either way, one finds that

ω = ωB(q) ± ω0 (25)

where the magnon frequency in the absence of an applied field is

ωB(q) = [(
ωa + ωe

)2 − ω2
eS

2(q)
]1/2

. (26)

The formalism also becomes easier forθ = 90◦, i.e. H0 transverse to the easy axis. In
order to have a check on the working, we derived the results first by independent calculation
and second as a special case of what we had for generalθ . For θ = 90◦ the inclinations
of the sublattices are equal withα1 andα2 equal to±α. The equations of motion separate
into two sets, involving6x

±, 6
y
± and 6z

∓, respectively, where6k
± = βk

1 ± βk
2. For the

zone-centre modesq = 0, the solvability conditions are

ω2 = ω2
r cos2 α + 2ωeω0 sinα (27)

for the set involving6x
+, etc, and

ω2 = ω2
r cos2 α (28)

for the other set. Hereω2
r = ω2

a + 2ωaωe defines the usual AF resonance frequency. The
frequencies (27) and (28) are identical with the resonance frequencies�⊥ and�‖ found by
Almeida and Mills [5] as the poles ofEµ(ω). It is clear from (28) that�‖ decreases as the
field H0 increases and substitution forα in (27) shows that�⊥ increases with increasing
H0. The existence of these two distinct resonance frequencies and their different variations
with H0 have been confirmed in FIR reflectivity experiments forθ = 90◦ [13].

For generalq we find that

ω2 = ω2
r cos2 α + 2ωeω0 sinα − ω2

eD
2(q) cos(2α) + 2ω2

eD(q) cos2 α

− (
2ω0 − ωa sinα

)
ωeD(q) sinα (29)

generalizing (27) and

ω2 = ω2
r cos2 α + ω2

eD(q) cos(2α)[2 − D(q)] + ωeω0D(q) sinα (30)

generalizing (28) whereD(q) = 1 − S(q). It follows that D(q) = 0 at the zone centre
and we show later that, for the particular case of FeF2 or MnF2, D(q) = 1 in principal
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directions at the zone edge. It is not difficult to prove that (29) and (30) give the same
frequencies at the zone edgeD(q) = 1.

Finally we mention theH0 = 0 limit of theseθ = 90◦ results. Since forH0 = 0 the
sublattices are aligned,α = 0, it is evident that (27) and (28) both reduce to the AF resonance
frequencyωr . It can also be shown that both (29) and (30) reduce toω2 = [ωB(q)]2, where
ωB(q) is the zero-field magnon frequency (26).

5. Numerical illustrations

The unit cell of MnF2 is well known [14]. The chemical cell is body-centred tetragonal
but the magnetic cell is simple tetragonal with a basis comprising the oppositely directed
spins at the origin and the cell centre. It is simple to evaluateS(q) using for δ the eight
nearest-neighbour vectors from the cell-centre spin and the result is

S(q) = 1
4

[
cos

(
qxa/2 + qya/2 + qzc/2

) + cos
(−qxa/2 + qya/2 + qzc/2

)
+ cos

(
qxa/2 − qya/2 + qzc/2

) + cos
(
qxa/2 + qya/2 − qzc/2

)]
. (31)

It follows that at the Brillouin-zone edge, in the principal directions [100], [001], [110],
[101] and [111],S(q) = 0 while at the zone centre as usualS(q) = 1. Thus the dispersion
curves in all these directions can be represented as curves ofω versusS(q) with the latter
running from 1 to 0. For convenience we use insteadD(q).

Illustrative results, mapped as plots of frequency versusD(q), are presented in figures 3–
5. In all these figures the ordinate is ¯hω in millielectronvolts. Forθ = 0◦ the well known
result (25) is that the doubly degenerate zero-field magnon undergoes a simple Zeeman
splitting that is uniform throughout the Brillouin zone. This is seen in figure 3. Figure 4
shows results forθ = 90◦. At the zone centreD(q) = 0, (27) and (28) predict a splitting
of the zero-field frequency that is initially quadratic in the field strength. Numerically, it
is known that for accessible fields this splitting is very small for FeF2 [13], and figure 4
shows that despite the smaller anisotropy of MnF2 the splitting in this case is also small.
We commented earlier that at the zone edgeD(q) = 1, the frequencies given by (29) and
(30) are the same in all fields and this is seen in figure 4.

Results for the intermediate valueθ = 45◦ are shown in figure 5. It is known [7, 11] that
the zone centre frequencies show a linear Zeeman splitting that decreases asθ increases,
finally vanishing atθ = 90◦ as already seen. This decreasing Zeeman splitting is clearly
seen in the comparison of figures 3 and 5 and similar curves for other intermediate values
of θ . It is further seen that in the dispersion curves for 45◦, like those for 0◦ but unlike
those for 90◦, the splitting continues more or less uniformly across the Brillouin zone. Our
numerical results show that this holds for most intermediate values ofθ except close to 90◦.

6. Conclusions

Almeida and Mills [5] used the RPA to address the question of the statics and dynamics of
uniaxial antiferromagnets for a general directionθ of field relative to the uniaxis and we
have extended their study of the long-wavelength dynamics by finding the explicit form of
the magnon dispersion throughout the Brillouin zone. Results similar to ours could have
been obtained from various implicit expressions obtained by Joneset al [4]. The general
result is given by (24) and as seen in figures 3–5 the dispersion curves for intermediateθ

interpolate in a fairly regular way between the known forms forθ = 0◦ and 90◦. We have
applied the RPA linearizationSz → 〈Sz〉 and there is obviously scope for the use of more
sophisticated methods.
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(a)

(b)

(c)

Figure 3. Magnon dispersion ¯hω (in millielectronvolts) versusD(q) for θ = 0◦ in MnF2. The
applied fieldsB0 are (a) 1 T, (b) 5 T and (c) 7 T.
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(a)

(b)

Figure 4. Magnon dispersion ¯hω (in millielectronvolts) versusD(q) for θ = 90◦ in MnF2. The
applied fieldsB0 are (a) 5 T and (b) 7 T.

We commented that the equations for the equilibrium configuration, namely equations (6)
and (7), have solutions corresponding to the SF and indeed P phases as well as the AF phase
that has been studied here. The equations of motion, (12)–(14), result from a linearization
about equilibrium and we believe that upon substitution of the appropriate values ofα1 and
α2 they should therefore give the magnon dispersion for values ofH0 andθ for which the
SF phase is stable. Thus the formalism presented here in principle enables us to study the
magnon dynamics including the soft-mode behaviour across the AF–SF phase plane inH0

and θ . Furthermore, it should be possible [15] to make use of our numerical dispersion
relations to evaluate thermodynamic functions such as the Gibbs energy and specific heat
in any part of the phase plane.

The present work could be used as the basis for studies of the magnon spectrum
of superlattices of uniaxial antiferromagnets. Experimental studies [16, 17] of FeF2–
CoF2 superlattices and related theoretical work [18, 19] have concentrated on equilibrium
configurations. The problem of calculating an effective permeability tensor for such
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(a)

(b)

(c)

Figure 5. Magnon dispersion ¯hω (in millielectronvolts) versusD(q) for θ = 45◦ in MnF2. The
applied fieldsB0 are (a) 1 T, (b) 5 T and (c) 7 T.
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superlattices has been addressed by Stamps and Camley [20] but as far as we know there
has not yet been any study of the magnon spectrum. As is the case for ferromagnetic
superlattices [21] it is necessary to understand the bulk magnon spectrum as a preliminary
to deriving the superlattice spectrum.
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